

Case Study 4

Goals

Fruit processing industry

- Nafplio, Eastern Peloponese, Greece

- High water demand puts pressure in the aquifer

-Seasonality puts strain on the local biological treatment plant

- Under-performing biological treatment plant, leads to higher waste removal cost

The Unit

Recovery of Value-added compounds

AOP

SBP

Case Study 4 Goals

- Treat individual & final waste streams
- Isolate useful/value-added compounds compounds (properties & market price) e.g. polyphenols, flavonoids, anthocynins etc
 - Treat wastewater so it can be recycled:
 - Irrigation of nearby orchards
 - Reused within the plant for secondary uses or reduce the organic load sufficiently so the biological treatment plant can cope

Unit Design

P&ID

The project leading to this application has received funding form the European Union's Horizon 2020 innovation programme under grant agreement No 869318

Adsorption considerations

Selectivity

preferentially bind a specific class of compounds Hydrophobicity/ Hydrophilicity bias

retain also almost hydrophobic compounds **Materials**

Sorbents

Beyond

Adsorbent	Material	Structure	Particle size (µm)	Surface Area (m²/g)	Pore Size (Å)
AmberLite™ FPX66	Resin	Aromatic	700	800	150
AmberLite™ XAD-4	Resin	Aromatic	640	750	100
Phenyl-Hexyl	Silica	Aromatic	15	400	100

Biosorbents

agro-industrial solid wastes can be used as sorbents

- cheap
- eco-friendly
- upcycling
- waste reduction

Recovery

Recovery attributes

Efficiency

Environmental hazards

Cost effectiveness

Ease

Extraction Solvents

Subcritical Water Extraction

The project leading to this application has received funding form the European Union's Horizon 2020 innovation programme under grant agreement No 869318

Extraction Solvents

Water - cheap, inefficient, non-toxic Methanol - high cost, increased toxicity Ethanol - very high cost, lower toxicity

SubCritical Water Extraction (SCWE)

- Temperature: 100 374°C
- Pressure high enough to be in the liquid phase 10-20 bar

- Efficiency
- Low cost
- Non-hazardous green

Value-Added Compounds

Polyphenols:

- Naturally occurring compounds
- Complex structures containing multiple phenolic rings
 - Two main classes **phenolic alcohols**, **phenolic acids**
- Further classification depending on the phenolic ring strength (phenolic acids, flavonoids, stiblins, phenolic alcohols, and lignans)

Structures

Examples

Results

Static Adsorption Methodology

Static Adsorption

Static Adsorption Results

Dynamic Adsorption Methodology

Dynamic Adsorption

Dynamic Adsorption Results

Recovery

Recovery

Static Adsorption Results

Maximum capacity 22,78 g/kg (g of polyphenol per kg of resin)

Contact time vs Adsorption % 60 min 95% 30 min 60%

Yield = 130 g/m3 (mg of polyphenol per L of wastewater)

Dynamic Adsorption Results

Unit

 The adsorbent is capable of adsorbing polyphenols for at least 10 regeneration cycles

 1.7 m³ wastewater can be treated per kg of resin per cycle

Pilot Plant Adsorption Results

- Continius flow dynamic adsorption adsorbes over 80% of the polyphenols present in orange juice by-product
- This step has 20% contribution in the reduction of the overall Total Organic Carbon (TOC) of the orange juice byproduct

Recovery

Advanced Oxidation Process Design Catalyst CO_2 +UV OH" Oxidant Hydroxyl Model Pollutant radical Compound Selection Results

The project leading to this application has received funding form the European Union's Horizon 2020 innovation programme under grant agreement No 869318

The CPC photocatalytic reactor

Continuous flow

Operates under either solar or artificial UV light

The annular photocatalytic reactor

- Continuous flow
- Operates under artificial UV light

Model Compound Selection

Lab tests: 2,4-Dichlorophenol

Pilot scale tests: Sunset Yellow

Degradation of model compounds

Demonstrated ability to remove 90% of organic pollutants

